Online supplement to Baillon, Bleichrodt, & Cillo (2015). "A Tailor-Made Test of Intransitive Choice." Operations Research 63(1), 198-211

This online supplement presents additional results and details. In Section 1, we show that our results are inconsistent with González-Vallejo's (2002) proportional difference model. In Section 2, we explain the bisection procedure that we used to measure indifferences in the experiment.

1. The proportional difference model

González-Vallejo's (2002) proportional difference (PD) model is also based on the notion of similarity, but it embeds a deterministic similarity core in a stochastic framework. Consider two acts $X = (p, x_1; 1-p, x_2)$ and $Y = (p, y_1; 1-p, y_2)$ with $x_1 > y_1, x_2 < y_2, p_1 < \frac{1}{2}$. According to the PD model of González-Vallejo (2002, Eq. (3) and the extension to more than two attributes discussed on page 140), X is strictly preferred to Y if and only if

$$\frac{x_1 - y_1}{x_1} - \frac{y_2 - x_2}{y_2} - \frac{1 - 2p_1}{1 - p_1} \ge \tau + \varepsilon.$$
(1)

In Eq.(5), τ is the decision maker's decision threshold. González-Vallejo (2002) suggests that τ can depend on the context and on the decision task. However, within tasks τ is constant. The parameter ε is a random noise term with mean zero. Equation (5) says that X will be preferred to Y if the difference between the proportional advantage of X over Y $\left(\frac{x_1 - y_1}{x_1}\right)$ and the proportional advantage of Y over X $\left(\frac{y_2 - x_2}{y_2} + \frac{1 - 2p_1}{1 - p_1}\right)$ exceeds the decision threshold plus error.

The first part of our measurement procedure permits a test of the PD model. Under the PD model the indifferences between $(p,x_{j+1}; 1-p,r)$ and $(p,x_j; 1-p,R)$ imply that:

$$\left|\frac{x_{j+1}-x_j}{x_{j+1}}-\frac{R-r}{R}-\frac{1-p-p}{1-p}\right| \le \tau + \varepsilon.$$

$$(2)$$

Eq. (2) implies that $\frac{x_{j+1} - x_j}{x_{j+1}}$ should be constant up to random noise for successive

elements of the standard sequence.

The data are inconsistent with this prediction. Table 1 shows that the ratio $\frac{x_{j+1} - x_j}{x_{j+1}}$

decreases over the standard sequence. The null hypothesis that $\frac{x_{j+1} - x_j}{x_{j+1}}$ is constant up to random noise for different j could clearly be rejected (repeated measures ANOVA, p < 0.01).

X ₀	x ₁	X ₂	X ₃	X 4	X 5
20	32.55	45.05	60.39	74.95	89.57
	[28.38,33.50]	[36.38,48.50]	[46.62,60.75]	[55.88,75.50]	[66.50,85.50]
$\frac{\mathbf{x}_{j+1} - \mathbf{x}_{j}}{\mathbf{x}_{j+1}}$	0.357	0.251	0.222	0.174	0.153
	[0.295,0.403]	[0.191,0.295]	[0.183,0.255]	[0.137,0.185]	[0.132,0.171]

 Table 1: Mean values of the elicited standard sequence.

Note: interquartile ranges in square brackets.

2. Procedure to measure the indifference values

To elicit the standard sequence of outcomes in the first part of our procedure, outcomes x_{j+1} were elicited such that $(\frac{1}{3}, x_{j+1}; \frac{2}{3}, 11) \sim (\frac{1}{3}, x_j; \frac{2}{3}, 16)$.ⁱ The indifference value x_{j+1} was determined through a series of choices between A = $(\frac{1}{3}, t; \frac{2}{3}, 11)$ and B = $(\frac{1}{3}, x_j; \frac{2}{3}, 16)$. 16) where t was always an integer and varied as follows. The initial value of t was a random integer in the interval $[x_i, x_j + 25]$. There were two possible scenarios:

 (i) If A was chosen we increased t by €25 until B was chosen. We then halved the step size and decreased t by €13. If A [B] was subsequently chosen we once again halved the step size and increased [decreased] t by €6, etc. (ii) If B was chosen we decreased t by $D'=(t-x_j)/2$ until A was chosen. We then increased t by D'/2. If A was subsequently chosen then we increased [decreased] t by D'/4, etc.

The elicitation ended when the difference between the lowest value of t for which B was chosen and the highest value of t for which A was chosen was less than or equal to $\notin 2$. The recorded indifference value was the midpoint between these two values. Table 2 gives an example of the procedure for the elicitation of x₁ through choices between A = ($\frac{1}{3}$, t; $\frac{2}{3}$,11) and B = ($\frac{1}{3}$,20; $\frac{2}{3}$,16). In this example, the initial random value for t was 36. The recorded indifference value was the midpoint of 26 and 28, that is, 27.

Iteration	t	Choice
1	36	А
2	28	А
3	24	В
4	26	В

Table 2. Example of the elicitation of x_{1.}

The procedure in the second part was largely similar. We elicited the value z_p for which indifference held between A = (p,x₄; 1-p,20) and B = (p,x₃; 1-p, z_p)ⁱⁱ where p was one of {¼, ½, ⅓, ⅓} and x₄ and x₃ were the outcomes of the standard sequence elicited in the first part. The indifference value was elicited through a series of choices between A = (p,x₄; 1-p,20) and B = (p,x₃; 1-p, s), where s was always an integer and never equal to x₃ to avoid the possibility of event-splitting effects. The initial stimulus s was a random integer in the range [z_{EV} -3, z_{EV} +3] where z_{EV} is the value of s that makes A and B equal in expected value with the restriction that s could not be less than €20. There were two possible scenarios:

- (i) As long as A was chosen we increased s by $D = (x_4 z_{EV})/2$ if $p \le \frac{1}{2}$ and by $D = (x_5 z_{EV})/2$ if p > 1/2. We used a different adjustment for $p \le \frac{1}{2}$ to avoid violations of stochastic dominance. We kept increasing s by this amount until B was chosen. Then we decreased s by D/2. If A [B] was subsequently chosen we increased [decreased] s by D/4, etc. A special case occurred if the difference between s and x_4 (for $p \le \frac{1}{2}$) or between s and x_5 (for $p > \frac{1}{2}$) was less than 5. Then we increased s by 10 and subsequently kept increasing s by 5 until B was chosen. Then we decreased s by 3.
- (ii) If B was chosen we decreased s by D'=(s 20)/2 until A was chosen. We then increased s by D'/2. If A [B] was subsequently chosen we increased [decreased] s by D'/4, etc.

Iteration	S	Choice
1	26	А
2	44	В
3	35	В
4	31	В
5	29	А

Table 3. Example of the elicitation of $z_{\frac{1}{4}}$ when $x_4 = 61$ and $x_3 = 48$.

The remainder of the procedure was the same as in the elicitation of u. The elicitation ended when the difference between the lowest value of s for which B was chosen and the highest value of s for which A was chosen was less than or equal to $\notin 2$. The recorded indifference value was the midpoint between these two values. Table 3 gives an example of the procedure for the elicitation of $z_{\frac{1}{4}}$. In the example, the initial choice was between A = ($\frac{1}{4}$, 61; $\frac{3}{4}$, 20) and $B = (\frac{1}{4}, 48; \frac{3}{4}, 26)$, where 26 was selected as the initial stimulus value from the interval [24.3-3, 24.3+3]. The recorded indifference value was 30, the midpoint between 29 and 31.

ⁱ In the experiment we varied what was option A and what was option B.

ⁱⁱ In the experiment we varied which option was A and which B.